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ABSTRACT

Miiy napects of the !UF-D atatistic, usad for
verification of accowntability data, have been
oxsmined in the safeguards literature. In this
paper, basic MUF-D results are axtended to more
peneral environments than sre usually conald-
ered, Thease environments include arbitrary
Lhsutement esrer structures, various sampling
regimes that could be imposcd by the ingpector-
ate, and the attributec/variables ¢ramawork.

L. INTRODUCTION

Verificatjon of an inventory or of a rec-
preed MUF cails foc the remergurement of a
gowple of items by an inapectorate followed by
c:rparison of thn dnswpectosatn's dat: with the
!oeltity’a reported values.  Such a comparisun
i lutenaed to protect aguilnst falsiflcation of
ateounting data that could cnncesl material
losa. In the lInternational arena, the observed
difcrepancles butweon the inspactnrate's data
aml the reported data are quantified using tha
D stutlstic {(sca, for examplc, tha IAEA Taechai-
col Manuatl),

Unilar vory general condlitions regurdiug the
facility's/Inapectorate's masuram-nt drror pro=-
ceduecy and the (napectorate's sampling reglimwe,
the varlance of the MUF-D utatistic dacomponcs
inte throa compunert., The Inspection's senai-
tiz2ity ngalnst var.oun faleffleatlon ncar-trlos
¢t la traced to o or more of thesa compo-
nente. Obvious  fny lleatlous aexlet for the
ptimiing of eftertive 'nupectioas, partleularly
In the aren of rvrour e cptimizatlen,

n subaequent wnetiona, prepereles of tha
caonveutional D and MUF-D wtatiaties are axmninad
{n deeall.  Reaults aru then extended Lo o pon-
cratliod D atatiatle, which §s unctul whan two
oF rore types of loapectorate meamwements arae
Invelevnd (g the attributes/variablea frae -
work). The related contextn ga beyond Lhose
dincesaed In the snfoguarvds literatury.

II. THE CONVENTIONAL FRAMEWORK
A. Characterigation of MUF and D

Derlvation of the main results necessarily
entallsa some mathematics. In what follows,
natrix algebra is used to devulop the theory.
Though perhaps unfamiliar to those with nonsta-
tigtical backgrounds, the assoclated notation
providas fcor concise expression of very general
formulae, Relation of matrix algebra to the
more common'y used (und less readablae) summa-
tion signs and asubscripts is reviewed in many
texts+J on linear models. Readers uninterested
in such datalle may lgnore them and focus atten-
tion on the taxt,

Let the facility oparator's accountability
values usad in the MUF calculation be repre-
sonted by the N-component voctor o, where o .»
written in partitioned form aa

of = [o(BI)T | o(R)T | o(8)T | o(ED)T) (1)
and

o(BI) 1s the vector of the N(B{) account-
ability valuas corrosponding to ltemn
in boginning inventory,

u(R) 1s the wvector of tha N(R) account-
ablliLy vinlues corresponding to items
in recalpt,

o(8) is the vector of the N(S) nccount-
ability ~values corrarponding to ltena
in shipment,

o(tT) ia the vertor of the N(El) account-
vbll ity valuen correspoudiug Lov Jtems
in ending inventury, and

N = N(BI) + A(R) + N(8) + N(EL) {m thuo total
number of items {uvolved (some {tems
iay be countaed twlea, as would b the
cang fur a gilven ltem in both lepin-
ning and ending fuventury),

whyre Lthe  symbol "I denaoten  transposition,
Alpo, 1ot



Iy = the covariance matrix of o . (2)

The form of I, can be somewhat complicated, de-
pending on how the facility measures various
items, e.g., how accountability weights, concen-
trations, and so on are measured by available
instrumentation.

" Let the vector f correspond to 0 and dencte
the vector of falsifications, If the facility
does wuot falsify any accountability values,
then f is equal to a vector of zeroes. Note
that the effects of inn..ant causes, such as
clerical errovs, are iudistinguishable from
those of malevolent falsification and can pro=-
duce nonzero values of f. In any event, the
data reported by the facility is ~ + f, and it
follows that the reported MUF is

MUF = 2T (o0 + f) (3)
= MUF, + F ,
where
F = 51f = the total falsificati n,

MUF, = zTo = the (unfalsified) MUF that
would be reported if F were
equal to 0, and

2T = (2(BDT | a(R)T | 2(s)T | =(ENT)
(4)
o (+1(8D)T | +1(R)T | -1¢8)T | -1(ED)T) ,

L(BI) denotes the N(BI)-component vector with
all components equal to ona, and J(R), 1(3),
and 1(EI) are defined gimilarly.

Suppose for the moment that the irsapectorate
indcpendently measured all i'ems in tha reported
MUF.  (Aside: assumed independence does not
simplify the mathematics, but it does lead to
cleaner interpretation of results.,) Then the
resulting data would be represented by the
vector 1, where

1T & (180T | 10T | ()T | £(EDT)]  (5)
and

1(BI) is Lthe vector of the N(BI) {nspactor-
ate's values corvesponding to ltemg
in beginning inventory,

I(R) 1{a the vector of the N(R) inspector-
ate's valuey corresponding to items
{n recelpt,

{(5) is the vector of the N(S) inspector-
ate's valuwg corvespunding to ftems
in shipment, and

I(EI) {a tha vector of the N(E!) {nspactor-
ote's values corresponding to ltema
in ending inventory.

Also, let
I = the covariance matrix of i . (6)

As with the opcrator's covariance matrix, I,
the form of the ingpectorate's covariance matrix
I{ can be very complicated depending on how
measurements are made.

Owing to resource constraints, the inspec-
torate does not measure all of the items in-
volved. Rather, only a portion is measured,
For 1illustration, supponse that random samples
of n(BI), n(R), n(8), and n(EI) items are in-
spacted from the beginning inventory, receipts,
shipments, and ending inventory, respectively.
Extensions to other (more realistic) sampling
regimes are discussed later. Let d(Bl), d(R),
d(s), and d(EI) denote the average observed
differances, operator minus ingpector, for the
items measured by the inapector in the beginuning
inventory, recelpts, shlpments, and ending in-
ventory, respectively, The D statistic for this
sampling procedure extrapolates thes= averages
and is

D = N(BI) d(BI) + N(R) d(R) - N(S) d(S)
~ N(EI) d(EI) .

An equivalent way of writing D, and one
which leads to the derivatiun of useful prop-
erties, s

Demaol [0+ £)-1), (7

where [(o + ) - 1] represents the vector of
differences that would have b-un observed had
the {inspectorate measurad all N {tems and the
veator 8 (for "sampling") reflects the sampling
regime. In partitioned form,

a7 » [o(BI)T | 8(R)T | 8(s)T | s(EI)T} . (8)

The JtP element of r(BI) is squal to

(s(BI)]4 = N(BI)/n(Bi) times the jth element
of ¢(BI) {f the jtP {rem in ve-
ginning inventcry is measured by
the {nspectorate, and

= 0 1¢ the Jth {tem is not meas-

ured by the Inspectorate,

The vactors a(R), 8(5), and s(El) are d2fined
slmilarly,

Notae that tha vector s In Eq., (#) {s random
=«{t depends on the sampli‘g wechanian. The
expectad value of o ls equal to g, written

Hs(ﬂ) n g, (9)



where ‘Eg denotes -expectation with respect to
the sampling mechaniem and z is as defined in
Eq. (%). Loosely speaking, Eq. (9) implies that
each item is pgiven weight one, on average, by
the sampling, and this phenomenon is at the
heart of the unbiasedness of the D statistic in
evaluating falsificationm.

Other properties of s as defined above are
found from sampling theory. Consider the covar-
iance matrix of s(BI), denoted Eg(pr). That
matrix is

T T
1(BI)1(B1) ]
Zs(BI) = k(BI) [I(BI) - NG (10)

tor the constant

. N(BI)[N(BI) = n(BI)]

= 0 if N(BI) = 1

and I(BI) the identity matrix with dimension
N(BI),

Because the inspectorate pursues stratified
rampling with four random samples (for B3I, R,
&y and EI, respectively), the covariance matrix
Lg for a has the block diagonal form

Ls(B1) 0 0 0
0 Loy 0 0
Ty = s() . an
0 0 La(s) 0
0 0 0 Lg(El)

where cach of :a(BI)' zs(R)' Ea(s)y and Ig(gr)
have the structure as indicated in Eq. ?10).
More refined gtratirication, such as when the
ftems in beginning inventory are themselvas
atratified and randomly sampled, generace othar
block diagonal covarfance structures,

B. Mean and Variuance of N0

. Bquations (1)~(l11) 1lay the groundwork tor
obtaining properties of the D statistic. Re-
turntug to BEq. (7), the expacted value of D la

F(D) » E[aT(o + € ~ 1)) ,

and mutual independence of (m, o, 1) implles
this {s

n F, (12)

where F g the total falsification, This result
deponda on unblaged nweasurements and on a sam-
pling regime tor which Eg(a) = s, Many sampling
regimes, wuch as those based on more refined
ntratitication or on olustering, can satisly
this conditiony no additional asswnptions nave
requlired,

The variance of D can also be found follow-
ing from Eq. (7), though the mathematics are
soitewhat complicated. Begin with

Var (D) = Var [8%(o + £ - i)] .

Independence of &, o0, and I implies that this
is equal to

el T z+ 2T £y 2 + €T I f

+ tr [Rg] (Lo] + tr [Eg] [E4] .
(13)

where "tr" denotes the trace of a matrix (i.e.,
the sum of its diagonal elements).

C. Variance of MUF-D in the Conventional
Framework

Note that the covariance between MUF and D
is

Cov (MUF,D) =
Cov [2T (o + £) , 8T (o + £ - §)] .

Independencr of 8, o0, and i leads, proceeding
by conditioning and unconditioning, to

= Cov {27 (o + £) , 8T (o + £)]
= Cov [2T (o + €) , 2T (o + £))
=~ Var (MUF) ,

the variance of the operator's reported MUF.
Thus, MUF-D has variance

Var (MUF-D) = Var (MUF) +« Var (D)
- 2 Cov (MUF,D)
= Var (D) - Var (MUF) . (14)

This relation is i{llustrated, for restrictive
conditions, on p, 173, Part F of the IAFA tech-
nical manual. However, it 48 clear from Eq.
(13) that the relatlon is a general one that
does not require facility's and/or Inapectyr-
ate's measurements to be independant between
strata or to have the so-called systematic/
randem  error structure, nor does it strictly
require stratified sampling by the inapectorace.
(Aslde., Per statistical convention, stratifi-
catlon is defined around the sampling wechanism
instead of, for example, being defined around
the physical characteristics of the items being
mensured. In the pragsent f{llustration, there
are four strata, correspondiug to Dbeginning
inventory, rocaipts, shipments, and enling in-
ventory.)



For any sampling regime and any (independ-
ent) inspection of reported accountability
values, the variance of the MUF-D statistic can
be written as Var (D) - Var (MUF) and, in more
intuitive form, as

Var (MUF-D) = 2T I; =
v {tr [zs] ”:Q] +tr [ES] [zi]}
+ fT L, f

= Var (inspactorate's MUF given
1002 sampling)

+ Var (sampling : measurement
errors) (15)

+ Var (sampling : falsifications).

The first term on the right hand side of equal-
ity (15), 2T £j z, 1s the lower bound for
Var (MUF-D) and represents the rinimum achiev-
able based on the quality of the measurements
involved. That bound is attained for 100% sam-
pling by the iuspectorate, and MUF-D is simply
the inspectorate's MUF. In that the inspector-
#te's meaguremr..te may be of poorer quality than
tiwgn of tha facility, obvious problems exiath
if & small variance if required.

Ths gsecond tewm,
(t'-' [251 [zol + tr [zs] [t{])

quautifies something of a penalty from the sam-
pling imposed by resource constraints; when no
facility measurements have been falgified, this
term reflects the additional variability in-
curred heyond the minimum. For many common san-
pling mechanisms (such as stratifiecd sampling)
and erroy models (such ag those involving so-
called systematic and random error components),
the second term can have a very slmple forn.
Such form foliowe from the orthogonality of I,
trom the swpling wmechanism to tha intraclass
correlation structure finduced by the ercor
nodely which {a discussed in the next section,

The third term In (15), fT L, £, reflec.s
Lbhe Juternction between the sampling plan and
thy Faletflcation scenario. It eyuals zero tor
speeial cases (e g., ne falsification or 100%
fnapertion) but {s vsually positive when falsi-
fleation ocecura. This term nlso has interpret-
able mtructure for steatified sampling, as dis-
cunsed {n See¢. I1.E, and has Implications for
approxima ing  detection gensitivity, as dis-
cvrged in See. IDLF,

a

D. Special FError Models and Stratified
Random Sampling

Foliowing from Eq. (15), under no falsifi-
cation

Var (MUF-D) = zl Iy =
+ tr [Eg] [E4] + tr [Eq) (Ej] .
Note that only the second term, tr [Lg] [EI,],

involves the facility's measurement errors.
Following from Eq. (l1),

tr [Ig] (L) = tr [Eg(a1)] [%o(I))
+ tr [E5(r)) [Zo(R)]
+ tr [Eg(s5)) [Eo(s)]
+tr [Tg(er)) [Zo(eD)) »

an equality which holds becauss the sampling
mechanisms for BI, R, S, and EI are independent.
Measurement correlations hetween strata do not
affect this term; only those within each stratum
cre relevant,

Consider the first term,

tr (Eg¢p1)! (Zo(aI)] »

the remaining terms behave similarly., Using
Eq. (10),

tr [Eg(1)] .Zo(nI)]

T
= k(BI) tr [I(Bt) - liﬁ%%}ggzl“ (Zo(an)]

1f all measured wvalues in beginning inventory
have a comnon "svstematlc error" with 'systema-
tic error variance® o%. the usual additive error
modal implies that the covariance matrix for the
facility's wcasurements o(BI) has the intraclass
correlation atructure

Ioar)y = of L(BD) W(BDT + of 1(B1) ,

where cg is the so-called '"raondom error vari-

ance.'" The abovn is
tr (Laepny] (Eocar))

2 N(BI)
o N(BI) [n(Bl) - 1] . (16)

Importantly, the term {nvolves only og, and the
facility'n no-called systaanatic error for meas-
ured baglinning faventory is "olluminnted,”



Such elimination does not occur when begin-
ning inve ntory consists of several types of
items, wl re each type is measured with a dif-
ferent instrument. In other words, types of
item: measured independently should not  be
pooled into a single stratum that s sampled as
a single entity when error models correspond to
the iatraclass structure and o, terms are im-
portant, It is %rimarily when falsification
occurs, and the f' I, f term cun dominate the
tr {Ig] [Ey] term in Eq. (15), that pooling can
be helpful to the inspectorate. This is because
an intelligent falsifier can take advantage of
the stratification, should such be knowr to him,
This is especially true in cases where inspec-—
tion resources are sciarce, MmOSt measurements
are of high quality, and gross falsifications
are of concern,

As a simple example, suppose that beginning
inveutory congists of 100 items: 80 items of
one tvpe and 20 items of another. The facility
chooses to falsify accountability values for 10
of the 160 items by large amounts. Further,
th=2 inspectorate has resources to inspect 10 of
the 100 items, If all items are pooled into a
single stratum for sampling, at least one falsi-
fied item Is inspected with 67% probability and,
given low measurement errors, detection occurs.

Next, consider the casc where the items are
stratified by type, with the 80 items of the
first type forming one stratum and the other 20
tornirg ano ner. The two strata are sampled
reparately,  No matter how inspection resources
are allocated (e.g., inspecting 5 items of ecach
type or inspecting 7 of the first type and 3
of the second), the facility has availahle. a
strategy to reduce the chances of {napection of
a fulsified item below the 67% figure above.
Thus, stratification can be inefficlent in deal-
fng with gecenarios involving gross falsifica-
tlons, As such, the rubject of how to stratify
saould be givea some thought, as has boen
noted,

At another extreme, if the scenaricos of in-
terest are such that the falsificatlon compo-
nent f7T L4 f of var (MUF-D) s not of great
concern, then there s little motivation for
pealing, Measurement  errcrs  dominate, and
stratificatfou can bLe helpful.

E. Falalfleation and Stratified Random
Sampling

The thivd term in Eq. (15) is, for Iy na in
Eqa. (10) and (11},

£ By £ w1 8DT Eypyy £

+ £(R)T Loeny E(R) + £05)T X ey E(8)

# PO By £CRD)

= 5% gpy NoD? ILARBNGED]L ()
+ Sé(R) N(R)? Lluzdg%g%éﬂ’ﬂll
+ spgs) NS LL_:ug%ggiﬂsall
+ si(sx) nen? s nﬁ%é;;w(sx)l i

where SE(BI) is the usual "cample variance' of
the N(BI) elements_ of the falsification vector
f(BI) and sﬁ(R), sg(s). and sf gr) are defined
analogovsly. These variances coupled with the
"finite population corrections,” [l -~ a/N],
renresent variability due to the sampling com-
ponent, If there vwere mno measurement errors
(tf, = I = 0), the value of the D scatistic
would depend on the sampling distribution alone.

Note that £T I £ is easily interpreted.
Using beginning inventory for 1llustration,
sy(pr) is the standard deviation of the falsi-
fication amounts for the N(BI) items. This
standard deviation can be “iewed as measuring
the departure frem uniform raleification. The
term 1 - n(BL)/N(BI) is the portion of {tems
that go uninspected, If, (or example, sp(p])
and [1 - n(BI)/N(BI)] are large, then d(BI) can
vary a great deal because of sampling. Con-
verselv, if sampling is not a great contributor
to overall variability, then the driving factor
behind Var [d(BI)] is measurement error.

F. Nonnormality of the D Statistic

As is apparent from tha previous sections,
normally diatributed measurement errors need
not imply that the D statistic be normally dis-
tributed. ndeed, the falsification scenario,
reflected in the vector f, and b~ sompling
regire, reflected in the mutvix Ig, can have
great impact on the distribution of D,

For illustration, histograms of the related
MUF-D, slmulated oua the basis of a gystems study
of a4 MOX facf{lity, are displayed in Figs. 1-3.
The firvat figure, for reterence, shows an ap-
proximately normal distribution for D given a
total falsiflcation of 9 kg, In the second
figure, an apparont skewness lu vizible. Do-
spite ldentical condlirions in Flgs., 1 and 2
(same  operating facility, sume sampling plan
for the Inspectorate, same total falsification,
sume maasuremonl errors, same nunber of simu-
lated trials), a changa In ths falsification
scenario and thus the % I U component of
Var MUF-D as per Eq. (15) bas led to increased
varfabiilicy, Note that the range of MUb-D
values observed §x nearly doubled in the latter
flgure. Figure 3 digplays a multimodal behav-
lor, which can occur in extreme cases,
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Fig. 2. Example histogram of simulated distri-
bution far MUF-D statistic: edest
talsification of a small portior of
{tems.

Evaluation of an inspection's s.asit!ivity
must  accommodate  aounormality, Although  the
no-falgitlcation distribution iy useful in de-
termining  threshold  wvalues for  statistical
tests, tha detectlon probability, i.e., the
prohability that tha observed D gtatistic will
exceed a specﬁfind threshold glven a particu-
Yar falgification seenario, may requlce evalua-
tion of the contaminated normal disteibutjon.?
In particutar, detectton probablilitlies derived
with standard deviations appropriate Jor the
no-falsifleation casa used In conjunction with
aggunnd  notuality can be far too optimistie,
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Fig., 3. Example histogram of simulated distri-
bution for MUF-D statistic: gross
falsification of very few items.

Conversely, standard devia ions from worst-case
scenarios can produce results that are too pes-
simistic,

ITII. THOE ATTRIBUTES AND VARIABLES FRAMEWORK
A, Two D Statistics

It should be noted that some of the results
of the previous section have appeared elsewhere
and that a considerable literature has arisen
arouna the conventional framework., Importantly,
the tormulation as in Sec. II allows for gener-
alization to other contexts.

Conglder the case where the lnspectorate has
the capablility to meagure items in any given
stratum with two stratum-speclfic instruments,
For couvenicnce, the twa types of {nstruments
are labeled the “attributes' and ‘'varlables"
{natrwnents; in the usual setting, the variables
instrument is of batter quality, and cost per
measurement is somewhat higher, Glven an ino-
spection that involves such measuremeonts, use
of all available f{aformation is Jsuperior to
forming « D gstatistic based on data from vari-
obles ifnutrunents alone, Thus, the results to
follow have application to data analysls as well
Ay to planning of fuspections.

Were the lnupectorate to measure all jtems
with each item's corresponding attributes and
variables lustrument, the resulting data would
bt represeoted by

al s« faBDT | aQOT | a()T | akDT) and
N . . (1K)
WUe e T ) v ) ve)T | wEDT)



where (a,v) denotes (attributes, variables).
Let I, and I, be the covariance matrices asso-
ciatec with a and v, respectively. Also let
I,y Cenote the matrix whose (j,k)t eiement is
the sovariance between the j'D element of a and
the kth element of wv. Many, if not most, of
the elements of Iy, may be zeroj correlations
may occur in special cases, such as when an NDA
instrument is uced with & short counting time
for attributcs purpuses and a long counting time
"for variabl:s purpises.

Extending the results from Sec. II.A, thece
are now two difference vectors, one for the in-
spectorate's attributes measurements and one for
variables:

d(a) =0 + f - a and
dv) ~o + f - v . (19)

Thas  vectors are analogous to the vector
o+.f -1 for the conventional D statistic as
discussed earlier.

Owing to resource constraints, the inspector
does not ohserve all of the elements of d(a)
and d(v). Rather, a sample 1is obtained. The
sampling can be pursued in many different ways,
such s by obtaining independent random sam-~
plest--one sample for the {items to be moni-
tered using the attributes instrument and an-
vther for the items to be monitored using the
varjalles instrument. Though such a proceduras
is nut without merit, it is somewhat inefficient
because of potential redundanecy. If available
r-scurces preclude cxtensive sampling and meas-
urement  properties are known, it 1is wasteful
for the insipectorate to measure a given {item
twice (l.e., using both {instruments) when the
same resourcas could be used to ingpect more
ftems,  This is especially true when gross fal-
sifications are of concerr.

For illustration, the sampling is proposed
as follows, and extensicn to other regimes
(e.g., independent random samples, approaches
based on clustering or on more refined strati-
ficativns) {s not ditficult. The four cate-
poriey of items (Bl, R, S, El) are sampled in-
dependently, as in Sec. 1I.A.  Lat n(BI) be the
to al number of {tema in the beglinning Inventory
1. oe inspected, where n(BL) = n (BT) + ny(BI)
aud  [ng(BD) yng(BT)]  are the nuaber of items
menftoced using the (attritutes,variebles) In-
strunents, A random sample of size n(BI) is
thtained from the "population” of N(BI) ftems
In the beginning inveutory. Of the un(BI) son-
pled items, ny(81) are selected at random and
meagured using the attributes indtru onty the
remataing ny(BI) =~ n(BI) - n (B8I) ftems are
measured  using  the  variables  ingtrument.
Aazuming  that  n,(B1)  and  ny(BI) are  both
prenter than zero (otherwise, oniy one Instru-
el {8 usied and resultg are as glven in Seo.
Ty define the gampling vectoras

{sla(BI)]}; = N(BI)/ny(BI) if the ith jrem
' is monitored by
the inspectorate
using the attri-
butus instrument,
and

= 0 elsge.

{s[v(BI)]}j = N(B1)/ny(BI) if the ith item
is monitored by
the inspectorate
using the wvari-
ables ingtrument,
and

=0 else.

The sampling vectors s[a(BI)] and s[v(BI)] are
analogous to the vector s(BI) in Sec. II, Tm-
portantly, s[a(BI)] and s([v(BI)] are not inde-
pendent, since no item can be inspected twice.
Let a{a(R)] be constructed similarly to s{a(BI)]
and so on for receipts, shipments, and ending
inventory.

Define a(a) and 8(v) in the anticipated way:

8(a)T =

{sla(21)}T|sla(R)])T|sla(s)1T| sla(El};T)
and (20)
a(v)T =

{alv(BD)]T|alv(R)IT]alv(5)]T] s{v(eD)]T}) .

It is not difficult to show that s(a) z2nd «(v)
have similar properties as the vectur s de-
scribed previously, i.e.,

Ela(a)] = E(g(v)] = 2z ,

T
= k_(BI) [1(31) - l&ﬁl)l!ﬂizm] ,

zs[a(ar)] H(B1)

L(BI(B I.)Tf]

- kv(BI) [I(BT) - N(BI)

Liv(B)]

{N(BI) (N(BI) = (BI)])

kn(BI) = —(1'1:(-8‘1-)-_[&( ﬁl) . .:‘i ])‘“ (iN(BI )L

(N(BT) IN(BI) = n (B1)]}
kv(BI) a= - (E;(Bl‘jwlﬁ(-ﬂll))- 0 i‘*';h()ll))l '
arl 80 oa for the other strata, The matreix

Linving)s whose (§,k)th plement {4 the covari-
ance betweon (u[n(Bl)))’ aud {alv(B1)))}y, is

N(pI) H L’
Ennv(u[) ” [N(nr) -1 L(AIL) - N(BI) )
()



Of evurse, other sampling reglmes generate other
mitrices and the concept ol nonoverlapping ran-
com samples can be extended to more refined
utratification. If independent. random samples
were abtainod for the attributes and variables
instruments used for the beginning Iinventory,
the Lg[a(Br)] aud Eg[y(pr)] would be the same
as above, but ILggy(pr) would equal the zero
eatrix.

The inspector can form two D atatisties for
ecach stratum. Using beginniug inventory as an
example, the two statistica are D{a(BI)],

Dla(B1)) = s{a(BI)]T dla(BI)] , (22)
and D[v(BI)],

D[v(BI)] = a[v(BI)]T d[v(BI)] . (23)

B. A Generalized D Statistic

By arguments mimilar to those in Sec. II,
it can be shown that

E(D{a(BI)]} = E{D(v(BI)]} = 1(BI)TE(BL) ,

which 1s the overall falsification for the
loe! ping inventory. As before, thia result
appl .¢s to any sampling mechanisms such that
E'nla(PI)]} = E{al[v(BI)]} = =(BI) coupled with
uibinsed measuremonts and independent verifi-
eatin., The variances of D(a(BI)] and D[v(BI)]
for boginning inventory have the same generic
structute o8 Eq. (13), and the same can be said
{nr LI~]'a of receipts, shipments, cad ending
irvertcry.,

Reeause D{a(BI)] and D[v(BI)] are estimrt-
irg th: same thiug (namely, overall falalfica-
tion for items in beginning inventory), these
tvo suatintles can be conblned to provide a
brrter estimate than either one alone. The
under)yling princlple is similar to that for a
welght:e average, except th.t the datermination
of welghts hers is not straightforward.

In tha present {llustration with nonover-
lappiug random samples, the covariance be-
twoen LDla(BI)] and D[v(BI)] is, for symmetric

Eip(BI)
Cov {D[a(BI)], DIv(BI)]}
» LT Egayeng) £(80)
+ 1(BDT [Lyenp) + Lav(ar)) 1(o1)
+ tr [Io(ar) + Lav(ar)! [Zeav(en)] - (44)
Note t' t this covarlance dependd on the Ealai-
Firatt . vector f(Bl)., Unfortunately, the fal-

gl€lcaction srennrio s unknown In real applica-
tions, as the valua of virtually any ltem could

be falsified to help disgulse diversion of nate-
rial elsewhere in the facility. TDependence of
variances and covariances on £(BI) mcans that

(1) selection of a "good" sampling regime for
inspcction depeuds on the underlying falsi-
fication acenario, and

(2) given a sampling plan, choice of w2ights in
a weighted average of D[a(BI)) and D[v(BI)]
also depernds on the underlying falsification
scenario.

Were a spucific scenario of Interest, thea
variances of D[a(BI)] and D{v(BI)] and the
covariance between them can be used to deter-
mine the weights in the usual weighted average
to estimate overall falaification. Similar
weighted averagea cnuld be cornstructed for all
strata, and all of such estimates combined for
estimation of F. The end reault can be termed
a generalized D statistic, gencralizing from
the conventional framework to the attrilutes/
variables framework. In other words, tle gen-
eralized D statigtic Dg can be written

Dg = wgr D[a(BI)] + (1 - wgy) D[v(BI)] (25)

+ wg D{a(R)] + (1 - wp) D[v(R)]

+ wg D[a(S)) + (1 - wg) D(v(8)]

+ wgr D[a(ED] + (1 - wgp) DIv(ED)] ,
where wpp denotes the weight in the weijghted
avarage of D[a(BI)] ard Dlv(BI)], end wg, wg,
and wgy are gimilarly defined.

(Aside: 1if the stratification scheme for
attributes measuremants is not identical to that
for variables measurements, estimation of falsi-
flcation is somewhat more complex than above.)

C. Variance of MUF-Dg

Note that the covariance between MUF and
Dlu(BY)] 18

Cov (MUF,D{a(BI)])
= Cov /2T(0 + £), sla(81)1Td(al2I)])
~ Cov {2T(a + 1), «ia(B1)]T[o(RI) + £(3I) - a(BD)])

« Cov (MUF, a(BD)T(a(Bl) » K(sD)]} .

Similarly, the covarianre between MUF aond
Dlv(BI)) 1s

~Cov {MUF,D{v(BI)]}
w Cov (MUF, =(BI)T[o(BI) + £(DI)]] .

It followa that the covarlance batween MUF and
Dg s



Cov (MUF,Dg) = Cov {MUF, wgy D[a(BI)] + (1 - way) D[v(3I)]

+ wg D[a(R)] + (1 - wg) DIv(R)]

+ wg D[a(8)] + (1 - wg) Dlv(S)]

+ wgg D(a(E1)] + (1 - wgp) DIV(ED)])

= wgy Cov {MUF, D[a(BI)]} (i - wgp) Cov {MUF, D[v(BI)])

+ wg Cov {MUF, D[a(R)]} + (I - wg) Cov {MUF, D[v(R)])

+ wg Cov {MUF, D{a(§)]} + (1 - wg) Cov {MUF, D[v(S)]}

+ wgr Cov {MUF, D[a(EI)]} + (1 - wgy) Cov (MUF, D{v(EI)]}

= Cov {MUF, z(BI)T[o(BI) + £(BI)]}

+ Cov {MUF, z{R)T[o(R) + £(R)]}

+ Cov (MUF, =(S)%[o(S) + £(S)]}

+ Cav {MUF, s(EI)T[o(EI) + £(EI)])

= Cov {MUF, z(BI)T[o(BI) + £(BI)] + z(R)T[0(R) + £(R)]

+ z(S)T[o(S) + £(S)] + z(EI)T[o(EI) + £(EI)])

= Cov [MUF, zT(o + £)]

= Var (MUF) ,

or Lite varisnce ol MUF. Thus, as feor tha «ou-
vantional MUF-D, 1t follows that

Var (MUF - Dg) = Var (Dg) - Var (MUF) . (26)

Erpressiug Eq. (26) as a function of L,, Lj, and
s0 ou ia an exercise 1in linear algebra.

IV, DISCUSSTON

Results from the previous sections are uaa-
ful in the planning of inspectiona as well as
in the analysls of resultlng data. Plenning 1ia
clearty a ditficult iugsuu, as there is no iderl
golution, Specific plans effective at detcr-
ring/derecting one type of Falsification can be
in:f¢nctive agalnat tvpes in  the "oppasite
dlrectii a"

To illustrate, conalder the case where a
arall number >f accountability values are falsl-
fled by large amounts. The best way tu counter
such cctton 1la through inspeuction of uy many
items as ia practical. ' Presence of fixed re-
pources motivotes widespread use of atti'butes
instruments, oa the improved accuracy of the
more ~xpensive variables i{natrument ls wasted
here. Conversaly, falaification of a large numn-
ber of accountability valueas by small amounte
is poorly dealt with by such an approach, as
meoasurament noise obseurns snull falsificatlions.

Thus, there does not exiat an inspecticn that
is "optimal" for all falsificatlon scenariocs.

For a spacific falsification scenario of
interest, one: method of generating candicate
sampling plans 1s tc select plans for which
(1) costs are within rasource constraints

(otherwise, the "solution" is 100% inspec-
tion using the best inastrumentation avail-
able), and
(2) the standard Jeviation of the generallzed
D statistic 1ig low. .
Such optimization may ba nontrivial,-especially
1f isgpues of how to stratify or cluster are in-
volved or 1f the diminlshing-taeturns nature of
the inspection's co:t va performance need to be
dutermined. (Aside: in {tem 2, usc of detec-
tion prubability as the criterion of interest
could be entertained instoad of the standard
deviation, although thls entails more intensive
calculations for operating facilities of realis-
tic size and gains little in terrs of parfornm-
ancn.)

Repeating the above process for s.veral
fulsifiecation scenarloa, plans that are robust--
i.e.y that have gnod qualities with respect to
a numbec of scenarlos--can be generated. In
thila way, sample sizeaa f[or meacurauents using
attributes and varlables LInstruments can  be
obtalned uslng n single, unifind critercicn.
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